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Abstract
We propose an Aharonov–Bohm interferometer with a quantum dot molecule embedded in one
arm and study the spin-dependent transport due to the interplay of the Fano and Rashba effects.
It is found that the Fano resonances of the molecular states exhibit opposite directions of
asymmetric tails with one being from peak to dip and the other from dip to peak. The Rashba
spin–orbit interaction induces a spin-dependent phase, making the two Fano dips overlap for
one spin component of conductance and the two Fano peaks overlap for the other spin
component. Both the direction and magnitude of the spin polarization of the conductance are
easily controlled and manipulated through the Rashba parameter and interdot coupling strength.
In addition, spin accumulations with opposite signs can be generated in the two quantum dots.

In recent years, enormous attention, from both experimental
and theoretical physics researchers, has been devoted to
the important role played by the spin–orbit (SO) coupling
in confined semiconductor heterostructures [1–4]. These
structures can be exploited as a means to control and
manipulate the spin degree of freedom at the mesoscopic scale
useful for phase-coherent spintronic applications. The major
problem faced in the spintronic field is that of the generation of
spin-polarized carriers and their appropriate manipulation in
a controllable environment, preferably in semiconductors. To
overcome such obstacles, Datta and Das [5] proposed a spin
transistor based on the Rashba SO interaction [6]. Since then,
a great deal of theoretical and experimental work has focused
on finding a way to control the electron spin with the quantum
interference effect, especially as regards the spin-dependent
transport in various kinds of ring-type conductors or two path
devices [7–10]. This opens up the area of spin-dependent
Aharonov–Bohm (AB) physics, including topics such as the
Berry phases [11], spin-related conductance modulation [12],
spin filters [13, 14] and detectors [15], spin rotation [16],
and spin switching mechanisms [17]. Moreover, a quantum
dot (QD) can be embedded in one arm of these ring-type
structures [18, 19]. The spin degree of freedom in QDs has

1 Author to whom any correspondence should be addressed.

been an increasingly active subject in the last few years due to
its potential applications [20–23], especially in the emerging
fields of quantum computation and quantum communication.
How to generate and manipulate a spin-resolved current or
conductance is the central issue in such applications.

Previous works have dealt with the spin-dependent
transport through AB interferometers with one QD or
parallel double QDs, for which the interplay of the Fano
resonance and Rashba SO coupling provides a remarkable
effect [18, 24]. However, the interferometer with serially
coupled double QDs, as shown in figure 1, has rarely been
addressed, in which the Fano resonance arises from the
interference between the states of the QD molecule and the
reference arm. Two or three QDs embedded in an AB ring
have been realized experimentally [25, 26]. In these two
papers, magnetic-field-dependent and gate-voltage-controlled
electronic transmissions were studied. The coupling between
dots plays an important role in the phase effect or Coulomb
blockade effect. Here we will focus our investigation on the
spin-polarized transport through an AB ring with two dots
embedded in one path. The spin polarization comes from
the Rashba SO effect which can be generated by applying
a longitudinal electric field. We can find that the coupling
between the two dots will affect the spin-polarized transport
heavily. For this interferometer, we find that the Fano
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Figure 1. Schematic diagram of an AB ring structure with a two-QD
molecule embedded in one arm.

resonances corresponding to the bonding and antibonding
molecular states have opposite directions of asymmetric tails.
By adjusting the Rashba parameter in the QDs and the
magnetic flux penetrating the ring, a large spin filter effect is
easily obtained and can even reach 100%. Moreover, tuning
the interdot coupling strength can strongly affect the Fano
lineshape as well as the spin polarization of conductance,
which can be inverted from positive to negative or vice versa.
The spin accumulations of the two QDs in the present device
are also controllable. We can obtain the up polarization in one
QD and the down polarization in the other, which may be of
practical use in the storage of quantum information.

The system of a mesoscopic ring with a two-QD molecule
can be described by the Hamiltonian

H =
∑

kασ

εkαc†
kασ ckασ +

∑

kσ

(tLRe−iφc†
kLσ ckRσ + H.c)

+
∑

iσ

(εi d
†
iσ diσ + Ui niσ ni σ̄ ) +

∑

σ

(tcd†
1σd2σ + H.c)

+
∑

kσ

(tL1eiσϕd†
1σ ckLσ + tR2eiσϕc†

kRσ d2σ + H.c). (1)

Here c†
kασ (ckασ ) and d†

iσ (diσ ) are the electron creation
(annihilation) operators in lead α (α = L, R) and dot i (i =
1, 2) with spin σ , respectively. Each QD includes a single
energy level εi and intradot Coulomb interaction Ui ; the
interdot coupling between QD 1 and QD 2 is denoted by
tc, while the coupling between QD 1 (QD 2) and the left
(right) lead is represented by tL1(tR2). tLR describes the direct
tunneling between the two leads with the AB phase φ =
2π�/�0. Considering that there is the same Rashba SO
interaction in the two QDs, an extra phase i σϕ is added to
the hopping terms of tL1 and tR2.

We now analyze the quantum transport property of this
device, through the Keldysh non-equilibrium Green function
technique. The charge current flowing from the left lead into
the AB ring, contributed by the spin up or spin down electrons,
can be derived as [24, 27–29]

ILσ = 2e

h

∫
dεRe{tL1e−iσϕG<

1Lσ (ε) + tLRe−iφG<
RLσ (ε)}. (2)

The lesser Green functions can be obtained straightforwardly
by using the standard Keldysh equation as

G<
σ = Gr

σ gr−1
σ g<

σ ga−1
σ Ga

σ + Gr
σ 	<

σ Ga
σ , (3)

where the first and the second terms on the right-hand side
describe the elastic and the inelastic transport, respectively. For

low temperature and the QDs out of Kondo regime, incoherent
processes like sequential tunneling and spin flip cotunneling
can be ignored and we only consider the elastic transport
which retains the quantum coherence. So we can simply take
	<

σ = 0. gr−1
σ g<

σ ga−1
σ is diagonal, with the matrix element

gr−1
diσ g<

diσ ga−1
diσ = 0 and gr−1

αασ g<
αασ ga−1

αασ = 2i fα(ε)/πρ (α =
L, R), where fα(ε) = [e(ε−μα)/kBT + 1]−1 is the Fermi
distribution function in lead α with chemical potential μα .
Then following the Dyson equation, the retarded (advanced)
Green function Gr(a)

σ can be given by Gr
σ = gr

σ +gr
σ	r

σ ga
σ . The

Green function gr
σ is for the decoupled system (i.e., when tLR =

tc = tL1 = tR2 = 0), and in the mean-field approximation its
matrix elements are

gr
diσ (ε) = ε − εdi − Ui + Ui〈ni σ̄ 〉

(ε − εdi )(ε − εdi − Ui)
(i = 1, 2) (4)

for the QDs and gr
LLσ (ε) = gr

RRσ (ε) = −iπρ in the leads.
〈ni σ̄ 〉 denotes the intradot electron number which can be solved
self-consistently by 〈ni σ̄ 〉 = −i

∫
(dε/2π)G<

di σ̄ (ε). Then by
substituting G<

1Lσ and G<
RLσ into equation (2), the current

formula can be easily rearranged into the form

ILσ = 2e

h

∫
dεTσ (ε)[ fL(ε) − fR(ε)], (5)

in which the transmission coefficient for the symmetric
coupling case, tL1 = tR2 = td , is

Tσ (ε) = �−1(ε)[(tc�cosϕ̃σ + πλtLR)2 + t2
c �2sin2ϕ̃σ ], (6)

with

�(ε) = |�2 − λ − 2π�tctLRcosϕ̃σ + π2t2
c t2

LR|2
+ |�(gr−1

d1σ + gr−1
d2σ )|2,

where we define � = πρ|td |2, ϕ̃σ = (2σϕ − φ) and λ =
(gr−1

d1σ gr−1
d2σ − t2

c ). In all numerical calculations, we take the
coupling strength td = 0.4 and the density of states in the leads
ρ = 1, corresponding to a linewidth 2πρ|td |2 � 1, which is
taken as the unit of energy. The chemical potentials of the left
and right leads are μL = −μR = V/2 with V as the bias
voltage.

For further treatment, we consider that the two single-QD
states are coupled and transformed into two new states of a QD
molecule [30]. The operators for the molecular states can be
expressed as a linear superposition of the QD operators as

(
f+σ

f−σ

)
=

(
cosβ −sinβ

sinβ cosβ

) (
d1σ

d2σ

)
, (7)

where f+σ and f−σ are referred to as the annihilation operators
for the bonding and antibonding molecular states and β =
(1/2) tan−1[2tc/(ε1σ −ε2σ )] with εiσ = εi +U〈ni σ̄ 〉 (i = 1, 2)

being the effective levels in the mean-field approximation.
Thus, the Hamiltonian for the lower arm with the coupled
double QDs is diagonalized as

H̃ =
∑

kασ

(t̄α+c†
αkσ f+σ + t̄α−c†

αkσ f−σ + H.c)

+
∑

σ

(ε+σ f †
+σ f+σ + ε−σ f †

−σ f−σ ),

2
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Figure 2. Spin-dependent conductance versus the intradot levels
ε1 = ε2 = εd for different values of the interdot coupling strength.
The solid and dashed curves correspond to G↓ and G↓, respectively.
Other parameters are ϕ = π/4, φ = π/2, tLR = 0.2, td = 0.4, U = 0
and the temperature T = 0.

where ε±σ = 1
2 (ε1σ +ε2σ ±√

(ε1σ − ε2σ )2 + 4t2
c ) are the levels

of the molecular states, and the strengths of coupling to the
leads are

t̄L+ = −tL1 cos β, t̄R+ = tR2 sin β,

t̄L− = tL1 sin β, t̄R− = tR2 cos β.

The transmission probability around the bonding or antibond-
ing energy can be approximated by considering the first-order
tunneling process as

T±σ (ε) = (ξ± + q±σ )2

ξ 2± + 1
|tLR|2 + (tLR + q±σ )2

ξ 2± + 1
, (8)

where ξ± = (ε − ε±σ )/�± with �± = πρ
∑

α t̄2
α±, and

q±σ = t̄L± t̄R± cos(2σϕ − φ)/�± is the Fano parameter
which determines the asymmetry of the Fano lineshape. It is
found that t̄L+ t̄R+ = −t̄L− t̄R−; therefore the Fano asymmetric
parameters corresponding to the bonding and antibonding
states have the relationship

q+σ × q−σ < 0,

which means that their Fano resonances have opposite
asymmetries (one is from a peak to a dip and the other is
from a dip to a peak or vice versa). Thus, one can expect
the evolution of lineshape for the transmission to be peak →
dip → dip → peak (PDDP) or dip → peak → peak → dip
(DPPD), which can be controlled by the Rashba interaction
through cos(2σϕ − φ) in q±σ .

To demonstrate the asymmetry of the Fano lineshape, we
show the linear conductance Gσ = e2

h T±σ (ε) as a function of
dot levels with the Rashba SO interaction ϕ = π/4 and the

Figure 3. Spin polarization η versus the magnetic flux φ for different
Rashba parameters: (a) ϕ = π/4; (b) ϕ = 3π/4. The solid, dashed,
dotted curves correspond to tc = 0.3, 0.5, 0.8, respectively. The
intradot levels are ε1 = ε2 = 0 with other parameters the same as
those in figure 2.

reduced flux φ = π/2 in figure 2. The interference between
the channel through the bonding (antibonding) molecular state
and the reference arm give rise to the Fano effect. The overlap
of the Fano resonances with opposite directions of asymmetric
tails can obviously be seen and the existence of the Rashba SO
interaction split the two spin components of conductance as
indicated by q±σ ∝ cos(2σϕ −φ). It is also interesting to note
that the Fano effect can be strongly affected by the interdot
coupling strength. Increasing tc from tc = 0.1 in figure 2(a) to
tc = 0.3 in figure 2(b), the conductance curve for the spin up
electron evolves from one dip structure to one peak while the
spin down conductance was retained with the PDDP structure.
Increasing tc further, in figure 2(c) tc = 0.5 and figure 2(d)
tc = 0.8, the Fano resonance for spin down electron rises
again with the characteristic of DPPD and the Fano resonance
for spin up electron changes into the form of PDDP. For even
larger tc, the characteristics of the Fano resonances for the two
spin components remain unchanged.

It can be found that the spin filter effect is greatly enhanced
when the interdot coupling increases. Figure 3 shows the spin
polarization η = (G↑ − G↓)/(G↑ + G↓) versus the magnetic
flux for three values of tc = 0.3, 0.5, 0.8 in the case of zero-
bias voltage. It is noteworthy that the spin polarization is
inverted from small positive to large negative by increasing tc

or vice versa. The magnitude of the spin polarization reaches
100% when tc = 0.8. By comparing ϕ = π/4 in figure 3(a)
with ϕ = 3π/4 in figure 3(b), one can see that the direction
of spin polarization gets reversed by tuning the Rashba SO
interaction. So in the present device both the direction of
spin polarization and its magnitude are easily controllable by
changing the system parameters, which are experimentally
accessible.
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Figure 4. Spin accumulation. (a) �n1 (solid, dotted, and
dash–dot–dotted lines for U = 3, 6, and 9, respectively) and �n2

(dashed, dash–dotted, and short dotted lines for U = 3, 6, and 9,
respectively) versus the bias V for ϕ = π/4. (b) �n1 and �n2 versus
ϕ for different intradot Coulomb interactions U at V = 3.0. The
other parameters are tLR = 0.4, tc = 0.8 and the intradot levels
ε1 = −ε2 = 0.25.

We can also investigate the spin accumulations �ni

(�ni = ni↑ − ni↓) in the two QDs when the bias voltage is
nonzero. The total effective strengths of coupling between the
QD 1 and the left and right leads are

TL1σ = |tL1eiσϕ + tcgr
d2σ tR2(−iπρ)tLRe−iσϕ|

= |tL1|2 + |t̃ gr
d2σ |2 + 2tL1gr

d2σ t̃ sin(2σϕ), (9)

TR1σ = |tR2gr
d2σ t12e−iσϕ + tL1(−iπρ)tLReiσϕ|

= |tL1πρtLR|2 + |tctR2gr
d2σ |2 − 2tL1gr

d2σ t̃ sin(2σϕ), (10)

where t̃ = πρtctR2tLR, and gr
d2σ is expressed by equation (4).

In the same way, we can obtain the strengths of coupling
between QD 2 and the two leads. The spin-dependent coupling
strengths make it easier for one spin to inject into a QD but
harder for it to leave, while for the other spin it is harder to
inject but easier to leave, giving rise to spin accumulation in
the two QDs. In figure 4(a), we show the spin accumulations of
the two QDs versus the bias voltage, which have the following
features: (1) the spin accumulations can be generated without
magnetic field when the bias is nonzero. (2) �n1 and �n2

can have opposite signs for properly chosen intradot levels. (3)
Both �n1 and �n2 reverse their signs when the bias voltage
is tuned from V < 0 to V > 0 and the magnitude of the
spin accumulation increases with V . One can find that the
spin accumulation is affected by the Rashba interaction. In
figure 4(b), both �n1 and �n2 versus ϕ exhibit a periodic
function with a period of 2π . |�n2| increases with U ; in
contrast, |�n1| decreases when U increases, which can also
be seen in figure 4(a).

Figure 5. Spin-dependent conductance versus the intradot level for
different numbers of QDs in the molecule: (a) three QDs; (b) four
QDs. The solid, dashed curves correspond to spin down and spin up,
respectively. The other parameters are the same as those for figure 2.

As an extension, we can also discuss the cases of a three-
QD molecule and a four-QD molecule embedded in a ring
arm. For simplicity, we assume that each QD has the same
level position εd and the direct tunnel coupling strengths, for
between adjacent QDs, are taken to be equal as tc = 0.8. The
effective molecular states can be obtained in the same way as
for the two-QD case. It is interesting to find that the overlap
of Fano dips or Fano peaks also exists and the conductance
shows nearly periodic behavior as a function of the QD level
when the number of QD increases, as can be seen in figure 5.
Furthermore, the spin polarization is tunable through the QD
number and it is also periodic with the QD level when the
Rashba SO interaction exists between lead and its adjacent QD.

In conclusion, we have investigated the spin-polarized
conductance in a two-terminal AB ring device that contains
two serial QDs in one arm. The two directly coupled quantum
dots form bonding and antibonding molecular states and the
corresponding Fano resonances have asymmetric tails with
opposite directions, which overlap to give rise to a large spin
filter effect when the Rashba SO interaction exists. Compared
to the AB ring with one QD, the present device with a two-QD
molecule in one arm of the AB ring utilizes the Fano effect
corresponding to a molecular state. The unique phenomenon
of overlap of two asymmetric Fano resonances, lacking in the
one-QD ring, efficiently enhances the spin filter effect. In
addition, the interdot coupling provides an additional tuning
parameter which drastically modulates the spin polarization.
It should also be pointed out that the spin filter effect of
the present device is much more efficient than the parallel
double-QD ring [18], in which the spin filter effect is due
to the interference between the bonding molecular state and

4
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the antibonding molecular state, whereas, in our device, the
interference between the reference arm and two molecular
states dominates, and shows the characteristics of tuning the
Fano resonances by interdot coupling and Rashba interaction
not seen in the parallel double-QD ring. Thus the spin-
polarized conductance is readily realized by adjusting the
interdot coupling and the Rashba parameter. There is an
another advantage of the present device: that the Rashba effect
can induce spin accumulation in the two QDs with one being
up polarized and the other down polarized, which may be of
practical use in quantum information storage.
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